Mechanisms of Oil Leakage into the Cabin Air Supply & the Regulatory Implications

Dr. Susan Michaelis PhD, MSc, ATPL
Mr. John Morton – Chairman, European Sealing Association

International Aircraft Cabin Air Conference
Imperial College London
19-20 September, 2017
BACKGROUND

• Ongoing concerns - jet engine oils leaking into cabin air supply
 • Reports - 1950’s onwards; wide variety – e.g: toxicity, leakage, effects
 • Frequency – Rare to frequent; under-reporting
 • Exposures – occurring
 • Safety - compromised
 • Increasing actions undertaken
 • Issues – Oil leakage seen in a variety of ways
OIL LEAKAGE SEEN IN 3 MAIN WAYS

1. Rare bearing seal failure

2. Failure condition + operational factors- Oil spillage, seal wear....

3. Design factor- low level leakage of oil in normal flight
AIMS & OBJECTIVES

Aim- assess gap between aircraft certification requirements for the clean air in crew and passenger compartments of transport aircraft using the bleed air system and the theoretical and practical implementation of the requirements.

Objectives – Assess (bleed air system)
1. clean air certification requirements
2. Theoretical documented understanding of bleed air contamination of cabin
3. Feasibility of implementation of clean air requirements
METHODOLOGY

2 Interview groups:
• Regulators x 2 - FAA & EASA
• Engineers x 12 – (aerospace x 10 & seal suppliers x 2) – Highly experienced

Interview questions (Q)
• Regulators – Practical process of certification & compliance- X 7 Q
• Engineers – Professional view how oil leaks past bearing seals – x 8 Q
AVIATION REGULATIONS/STANDARDS/GUIDANCE MATERIAL - CABIN AIR QUALITY

- CS/FAR 25.1309... - Equipment and Systems Design – Airframe (25.1309c - warning systems)

- CS E 510 & FAR 33.75... – Safety Analysis (engine & APU) → bleed air (Incapacitation/impairment)

- CS E 690... – Bleed air purity- (engines/APU)

- CS & FAR 25.831 a/b - ventilation
 A) Enough fresh air for duties
 B) Free of harmful hazardous concentrations of gases or vapors - (CO, CO₂, O₃) +++?

- AMC 21.A.3B(b) – Unsafe condition – Impairment/ discomfort – Incr frequency

- (EU) 2015/1018 - Reporting: e.g: Contaminated air- could endanger aircraft/occupants
OIL/AIR SYSTEM

Oil system provides oil under high pressure:
• Lubrication, cooling, sealing…..
 • e.g: main shaft bearings in bearing chambers
 (continuous supply & removal of oil)

Secondary (core/bleed) air from compressor – many functions incl.
• Cooling engine/accessory components
• **Bearing chamber and oil cooling/sealing**
• Control turbine tip clearances
• **Cabin pressurisation/ventilation**

• Amount of secondary air used is highly controlled & minimized – Reduce SFC penalties- Oil and Air Seals are required to do this.
BEARING COMPARTMENT SEALING

Oil Seal Functions - Bearing Compartments

• Prevent oil leakage out (fires/fumes in cabin/ loss of aerodynamic perf)
• Prevent moisture & dirt in
• Control of air leakage in → Improve performance
• Reduce oil consumption

Operate under positive & reverse pressures

Pressurised air from the compressor is used to prevent oil leaking through bearing seals & to cool/ventilate bearing sumps

Philosophy: Use pressurised air to maintain bearing compartment at a lower pressure than surroundings → Inward flow / prevent outward leak

1950s: High awareness of oil contamination of the bleed air but desire to reduce costs of extra compressor – Bleed air accepted as similar quality to outside air

2 main types of seals used
OIL BEARING CHAMBER

ExxonMobil (2016)- Jet Engine Oil System - Part One And Two, ExxonMobil Aviation Tech Topics.
FACTORS AFFECTING SEALS

• How seals operate
 • All dynamic seals are designed to leak
 • How much they leak depends on many factors / hydrodynamic effects
 • Style of seal & balance ratio or tooth pattern
 • Lubricating regime
 • Operating conditions (speed / temperatures / pressures)
 • Component condition / wear life / distortion

\[
M_{rel} = \frac{V_{rel}}{yRT_s}
\]

\[
m = \frac{\pi h^3 \rho (P_1 - P_2)}{6 \mu \ln \left(\frac{R_1}{R_2}\right)}
\]

Simplified leakage formulae
FACTORS AFFECTING SEALS

• Labyrinth seal

The Jet Engine, Rolls Royce 2005
FACTORS AFFECTING SEALS

• Labyrinth seal

The Jet Engine, Rolls Royce

- Non contacting clearance type seal
- Operates with tight clearances
- Controls leakage of air or liquid over restrictions reduces pressure over seal
- Fluid can flow in either direction depending on pressure/momentum/design

- Performance deteriorates with time, wear, changes in operating conditions
- ‘Rubs’ can have immediate detrimental impact on leakage as clearances increase
- Various benefits- low cost/simple
FACTORS AFFECTING SEALS

• Mechanical face (carbon) seal

The Jet Engine, Rolls Royce 2005
FACTORS AFFECTING SEALS

- Mechanical face (carbon) seal

Hydrodynamic effects

Increases In Speed Viscosity Waviness Roughness = Increased Gap

- Micro seal face separation typically 10 to 40 micro-inches (0.25 – 1.0 µm), so low leakage
- Pressure and temperature distortion can impact the parallelism of the seal faces and reduce or increase leakage
- Surface roughness 1 to 10 micro-inches RA (0.025 to 0.25 micrometres CLA can influence fluid film condition

- Performance less likely to deteriorates with time, wear, or changes in operating conditions as designs can often compensate during wear life
- Materials can usually recover from intermittent contact, but not continuous dry running
- More complex and expensive
FACTORS AFFECTING SEALS

- Seal leakage concepts

Hydro Mechanical

Thermal

Hydrostatic pressure distribution
Hydrodynamic / pressure distributions
Total gap profile
Hydraulic balance / separation
Pressure distortion

Frictional heat
Fluid / Gas viscosity
Gap temp.
Thermal distortion
Heat transfer

Fluid / Gas Film
Sealing gap characteristics
Components
Seal / housing component characteristics

Other

Thermal
Hydro-mechanical
Common assumptions – Oil leakage
1. Higher pressure in gas path than inside bearing chamber – Keeps oil in bearing chamber
2. Seals only leak when failure occurs
3. Reverse pressures to be avoided – prevents leakage

However
A) Oil may flow with & against positive pressure gradient with both types of seals
B) Positive pressure gradient difficult to attain at near ambient pressures (used in sealing bearing chambers)
C) Reverse pressures over seals- Allow oil to flow in opp direction – Both seal types
 • Labyrinths- clearance
 • Mechanical face seal- face opens up

All dynamic seals will leak, with seals designed to limit leakage/ ‘emission rather than leakage’
Engineers research 1/2

Oil leakage – Internal & external engine leakage / Into core & bleed air

Leakage past seals:
• Seals design:
 • not absolute design- seals leak
 • Pressure differentials
 • Thermal & axial radial (mechanical) changes in engine structures
• Leakage affected by engine speed & power
• Design parameters don’t account for all conditions
• Seal wear/ installation/ maintenance…..

Phase of flight affects leakage: Changes in engine performance (pressure differentials/ mechanical structure changes); low power settings…..
Mechanical and labyrinth seals both leak for varying reasons:

- Leakage is inevitable – design
- Labyrinth – rely more on pressure diff
- Mechanical (carbon) – Lubrication between surfaces = leakage over seal faces/ More subject to wear & temperature critical
- Leakage occurs both with & against the pressure drop - both

Oil leakage & regulatory compliance:

- No published limits for oil contamination
- No action required if leakage under permissible oil consumption

Oil leakage:

- Oil leaving intended areas - Vapor/drip…. (emissions ignored)
- Above permissible oil consumption limits

Reporting oil leakage:

- Under-reporting is occurring
- Oil ‘topping off’ is a normal procedure

Mitigating oil leaks to be given higher priority – solutions exist
Engine/APU certification process

- No specific process to follow/ Must demonstrate compliance

Bleed air quality compliance: CS –E 510/FAR 33.75 (safety analysis)
- Hazardous engine effects (Toxic products [eg: oil] in ‘cabin’ bleed air) incapacitation of crew/pax - extremely remote \(\leq 10^{-7} - 10^{-9}/\text{efh}\)
- Bleed air purity testing: CS E 690/ CS APU 320
- No specific guidance given

Substances reviewed & limits – toxins in bleed air?
- None specified/ concentration sufficient to incapacitate- FAA
- SAE ARP 4418A – EASA (recommended practice)

Airframe certification process: CS/FAR 25.831
- Air does not need to be pristine- FAA
- Enough fresh air to avoid discomfort/fatigue
- Levels provided for CO, CO\(_2\), O\(_3\) only
- Recent certification/sources of data (FAA): NRC, ASHRAE, AECMA-STAN (cancelled), NIOSH,CDC, Harvard public health etc....
DISCUSSION: OIL CONTAMINATION OF THE BLEED AIR SUPPLY

1. Regulations/standards & guidance material related to CAQ exist

2. Theoretical understanding:
 • General aviation industry – Rare seal leakage/ within limits
 • Specialist aero/seals experts – Commonly used bearing compartment seals allow lower-level oil leakage over seals in normal flight

3. Feasibility of implementation of standards with bleed air system
 • Low-level oil leakage over seals are part of normal system function using pressurised oil bearing seals.
There is a gap between certification requirements for provision of clean air in aircraft crew and passenger Compartments using the bleed air system
CONCLUSIONS 2/5:

1. Regulation & Standards:

- Various certification regulations/standards/ guidance material (GM) are available outlining the required bleed air quality

- not being met- Not specific enough

- Focus on the standard/regs & prevention of incapacitation with GM & impairment almost entirely ignored

- Clean air requirements open to interpretation & ignoring:
 - In operation environment
 - Hazards associated with oils & fluids
 - Adverse effects
 - low level normal leakage
 - Frequency
 - under-reporting
 - Lack of detection systems
CONCLUSIONS 3/5:

Design
1. Low level oil leakage over the bearing seals into the bleed air:
 • Expected normal condition - various phases of flight

2. Certification requirements not being met (despite appearance they are)
 • Literature/ aero & seal experts research
 • Oil leakage past seals associated with impaired/ degraded performance occurs more frequently than ‘major’ effects (remote/improbable) $<10^{-5}$-10^{-9}
 • Oil leakage (impairment)
 • Probable or above $\geq 10^{-5}$
 • Unsafe condition
CONCLUSIONS 4/5:

[Diagram showing a risk matrix with axes for Probability of Failure Condition and Severity of Failure Condition Effects, marking a point as unacceptable.]
CONCLUSIONS 5/5:

Compliance:
- Inadequately undertaken at certification
- No detection systems to monitor air in flight
- Requirements not specific enough to ensure occupants will remain free of adverse effects

Preventative control measures:
- Low-level oil emissions not taken into account
- Designs based on steady-state conditions
- No detections or filtration systems
- Rigorous controls lacking

Retrospectively:
- Previous certification requirements not specific enough to prevent oil leakage into air supply

Expertise & communication:
- Highly specialist area & inadequate communication to ensure compliance & airworthiness
RECOMMENDATIONS

• Review standards, guidance material
• Preventative measures: Normal & abnormal operations
• Oil leakage not to be linked exclusively to rare failure conditions/ maintenance irregularities
• Frequency – Explained by design factor
• Retrospective certification for bleed air quality
• Future aircraft- bleed free designs
• Far greater priority priority to regulatory compliance including low-level emissions in flight
• Warning systems introduced
THANK YOU

FURTHER INFORMATION AVAILABLE:

CAQ PAGE: susanmichaelis.com
MSc: point 4

susan@susanmichaelis.com